Solution Clustering in Random Satisfiability

نویسنده

  • Dimitris Achlioptas
چکیده

For a large number of random constraint satisfaction problems, such as random k-SAT and random graph and hypergraph coloring, we have very good estimates of the largest constraint density for which solutions exist. All known polynomial-time algorithms for these problems, though, already fail to find solutions at much lower densities. To understand the origin of this gap we study how the structure of the space of solutions evolves in such problems as constraints are added. In particular, we show that for k ≥ 8, much before solutions disappear, they organize into an exponential number of clusters, each of which is relatively small and far apart from all other clusters. Moreover, inside each cluster most variables are frozen, i.e., take only one value. PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 75.10.Nr Spin-glass and other random models

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering in Hilbert space of a quantum optimization problem

The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming dis...

متن کامل

Communities of solutions in single solution clusters of a random K-satisfiability formula.

The solution space of a K-satisfiability (K-SAT) formula is a collection of solution clusters, each of which contains all the solutions that are mutually reachable through a sequence of single-spin flips. Knowledge of the statistical property of solution clusters is valuable for a complete understanding of the solution space structure and the computational complexity of the random K-SAT problem...

متن کامل

Reweighted Belief Propagation and Quiet Planting for Random K-SAT

We study the random K-satisfiability problem using a partition function where each solution is reweighted according to the number of variables that satisfy every clause. We apply belief propagation and the related cavity method to the reweighted partition function. This allows us to obtain several new results on the properties of random K-satisfiability problem. In particular the reweighting al...

متن کامل

On local equilibrium equations for clustering states

In this note we show that local equilibrium equations (the generalization of the TAP equations or of the belief propagation equations) do have solutions in the colorable phase of the coloring problem. The same results extend to other optimization problems where the solutions has cost zero (e.g. K-satisfiability). On a random graph the solutions of the local equilibrium equations are associated ...

متن کامل

Pairs of SAT Assignments and Clustering in Random Boolean Formulæ

We investigate geometrical properties of the random K-satisfiability problem. For large enough K, we prove that there exists a region of clause density, below the satisfiability threshold, where SAT assignments are grouped into well separated clusters. This confirms the validity of the clustering scenario which is at the heart of the recent heuristic analysis of satisfiability using statistical...

متن کامل

Threshold values of Random K-SAT from the cavity method

Using the cavity equations of Mézard, Parisi, and Zecchina [Science 297 (2002), 812; Mézard and Zecchina, Phys Rev E 66 (2002), 056126] we derive the various threshold values for the number of clauses per variable of the random K-satisfiability problem, generalizing the previous results to K ≥ 4. We also give an analytic solution of the equations, and some closed expressions for these threshold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008